
业内首次! 全面复现DeepSeek-R1-Zero数学代码能力,训练步数仅需其1/10
业内首次! 全面复现DeepSeek-R1-Zero数学代码能力,训练步数仅需其1/10OpenAI 的 o1 系列和 DeepSeek-R1 的成功充分证明,大规模强化学习已成为一种极为有效的方法,能够激发大型语言模型(LLM) 的复杂推理行为并显著提升其能力。
OpenAI 的 o1 系列和 DeepSeek-R1 的成功充分证明,大规模强化学习已成为一种极为有效的方法,能够激发大型语言模型(LLM) 的复杂推理行为并显著提升其能力。
当前,AI 领域呈现出一种近乎“追星式”的热情氛围,每当有新的东西发布,便迅速引发广泛关注与高度评价,仿佛技术变革即将一触即发。同时大家情绪也波动剧烈,从“危机论”到“爆发论”频繁切换。OpenAI 最近出的《A Practical guide to building AI agents》的指南,就是他们最近捧上天的“神作”。它直接被捧成了“圣经”,一时间风头无两。
现在,AI 产品仅仅只靠机器人尬聊,已经留不住用户了,这是显而易见的新共识。
OpenAI 最近发布了三份针对企业客户的研究报告,本次挑选了其中的「A Practical guide to building AI agents」一篇进行了翻译。除非已经是 Agent 资深开发大佬,否则强烈建议 AI 行业的大家都来读一下这篇报告。
当前,强化学习(RL)方法在最近模型的推理任务上取得了显著的改进,比如 DeepSeek-R1、Kimi K1.5,显示了将 RL 直接用于基础模型可以取得媲美 OpenAI o1 的性能不过,基于 RL 的后训练进展主要受限于自回归的大语言模型(LLM),它们通过从左到右的序列推理来运行。
就在昨天,深耕语音、认知智能几十年的科大讯飞,发布了全新升级的讯飞星火推理模型 X1。不仅效果上比肩 DeepSeek-R1,而且我注意到一条官方发布的信息——基于全国产算力训练,在模型参数量比业界同类模型小一个数量级的情况下,整体效果能对标 OpenAI o1 和 DeepSeek R1。
最近,一位 X 网友向 OpenAI CEO Sam Altman 提问:「我很好奇,人们在和模型互动时频繁说『请』和『谢谢』,到底会让 OpenAI 多花多少钱的电费?」尽管没有精确的统计数据,但 Altman 还是半开玩笑地给出了一个估算——千万美元。他也顺势补了一句,这笔钱到底还是「花得值得」的。
OpenAI 最近发布了三份针对企业客户的研究报告,本次挑选了其中的「AI in the Enterprise」一篇进行了翻译。
近期,大模型智能体(Agent)的相关话题爆火 —— 不论是 Anthropic 抢先 MCP 范式的快速普及,还是 OpenAI 推出的 Agents SDK 以及谷歌最新发布的 A2A 协议,都预示了 AI Agent 的巨大潜力。
OpenAI首席财务官Sarah Friar探讨了通往AGI的发展路径,目前OpenAI已到达第三阶段:智能体(Agent)。除Operator和深度研究Deep Research智能体外,OpenAI即将发布全球最强编程智能体。